SDP17 Team 9, Justa T.A.D.

Justa T.A.D.
Midyear Design Review Report

Christopher Barbeau, CSE, Cyril J. Caparanga, CSE, Alexander Dunyak, CSE, and Matthew T. Shin, CSE

Abstract—Unmanned aerial vehicles (UAV or drone) provide
an effective way to get expensive or otherwise inaccessible images
and video. This type of data is especially important for traffic
analysis as the top-down view from a drone is ideal for gathering
data about traffic. Just a T.A.D. (Traffic Analysis Drone) is a
road traffic monitoring system that provides a system for
capturing and analyzing video. The system uses a drone camera
to capture top-down videos of traffics and performs image
processing to extract traffic data such as density and interval
between cars in a lane. The data is communicated to a data
server, and a web interface is available to easily access the data.

Index Terms — Image Processing, Traffic Analysis, Unmanned
Aerial Vehicle

I. INTRODUCTION

TRAFFIC IS A MAJOR ISSUE FOR SOCIETY AND IS ONLY PROJECTED TO

INCREASE. The roadways are regularly filled with cars being
used to transport goods and people. Traffic is just a part of life
for the average person. In 2014, commuters had an average of
42 hours per year in delays, and very large urban areas
(regions with over 3 million people) can have commuters with
average delays of up to 82 hours per year [1]. These delays
result in wasted man hours and additional costs for operating
vehicles. Workers need to plan their daily commute with
expectations of delays due to traffic. Truck drivers will
encounter even more traffic as they spend their work hours on
the road. In addition to consuming man hours, the delays
result in increased consumption of fuel, which results in
additional costs. The direct cost of fuels and indirect cost of
man hours resulted in $160 billion in losses [1].

Their costs are only projected to increase as more cars fill
the roads. This is primarily due to the growing economy,
workforce, and population. These factors will result in more
cars and trucks on the road, resulting in more congestion on
the already full roads. The response to the growing traffic has
been inadequate as infrastructure are unable to meet the
demands of the traffic. By 2020, the total delay time will
increase by 1.4 billions hours, totaling 8.3 billion hours in
traffic [2]. And, this will result in $192 billion in losses due to
congestion, which was $160 billion in 2015 [2]. If this issue is
not resolved or slowed, congestion will only continue to grow,

and Americans will pay the price with their time and money.

However, a solution is not so simple as building more road
infrastructures. These solutions need to be based on data that
ensures that there will be less traffic in the area, not just
moving the traffic to a new road. Knowing where traffic
occurs will help with deducing why it is occurring there and
how to best tackle that space. The issue comes with how this
data is collected. Current data collection methods primarily
capture two types of traffic sensors: “mobile sensor data” and
“point sensor data” [3]. Mobile sensor data is similar to google
maps as it can capture the data of a single car via GPS, and
point sensor data is based on a stationary camera recording
cars in a small area [3]. These methods are inadequate as not
all cars can be captured in point sensor data and mobile sensor
data requires that most cars have the application available.
Point sensor data is collected via stationary cameras on the
road. These cameras can be easily obstructed and only provide
a small sample of the larger traffic picture. Mobile sensor data
is primarily done by Google Maps and GPS data from cars.
For mobile sensor data to be useable for traffic engineers,
almost all cars on the road would need to be recorded [3].
Mobile sensor data and point sensor data are not able to
provide the necessary information needed for ideal traffic
analysis.

Just A T.A.D. will be able to provide the third type of
sensor data: “space sensor data.” Space sensor data is able to
provide data about all cars in a large space, such as speed,
density, etc and is largely considered to be the most ideal in
traffic analysis [3]. T.A.D. will utilize a drone with a
bottom-mounted camera to capture video. The video is then
processed to provide necessary information based on the space
sensor data of the video. Cars are detected and their count and
space between cars in a lane (interval) can be measured. The
processed data is then sent to a data server where a web
browser can be used to access and view the data.

This data is useful to transportation engineers as it gives
them data about the traffic situation in an area, and they can
formulate a solution based on the data provided. The space
sensor data provided is normally hard to obtain. It usually
entailed using a helicopter to capture videos of traffic, which
then needs to be further processed. Due to the cost associated
with this collection method, cameras collecting point sensor
data are preferred. T.A.D. will provide not only a means of

SDP17 Team 9, Justa T.A.D.

collecting space sensor data but also provide analysis of that
data. In addition, by using a drone, the general cost of
obtaining is comparatively cheaper.

Traffic engineers will be able to use T.A.D. to improve
traffic conditions by having the necessary data needed to make
decisions. The possibility of less traffic on the roads will mean
a better economy as people and goods will reach their
destinations sooner. This also means businesses will encounter
lower losses Despite these benefits, the unintended
consequence is the drone’s surveillance capabilities. The
drone will be able to collect a substantial amount of video
data. Although, traffic cameras already collect a substantial
amount of video data, a drone is able to fly anywhere and
record data. It is important that the public understands that it is
only for traffic data. More concerns will be raised if T.A.D. is
used in residential areas as it would have homes in its field of
view.

1I. DesioN

A. Overview

T.A.D. is a video capture and analysis system that utilizes a
drone to obtain top-down video of traffic to be used for
processing and analysis. The general system can be applied to
any drone where the module will fit. It consists of a Raspberry
Pi computer with a camera and 3G communication module.
The drone is operated manually and primarily acts as a
medium for transporting this module.

The block diagram, displayed in fig. 1, shows the main
components of the T.A.D. system. The drone block consists of
a Raspberry Pi and the drone hardware. The drone itself is not
necessarily part of the design but does allow for additions, if
needed. The drone will be controlled manually in this proof of
concept, but can also have pre-planned flight paths for
autonomous flight. The Raspberry Pi consists of the 3G
dongle, a camera, and image processing software. The camera
is used to provide video to the image processing. The 3G out
allows for communication to the database.The image
processing is primarily concerned with car count and density
of the video.This is done through image processing techniques
that will be described in detail in a later section. Only the car
count and density are sent to the database. The video itself is
not sent as 3G does not have the capabilities to easily and
quickly communicate video. Once the data is in the database, a
web browser can be used to access it. Data is refreshed every
30 minutes, and it can be viewed and downloaded.

e Prone
; Raspberry Pi)
{7 _...mageProcessing ™ :
i Wehicle Lang
] Detection Densaty
i I gemenen
i 33 Out Camara
______ ServerUser
. i e
—h: Database — BrOWSer
Cyri Ala h Matthaw all
Fig, 1. General block diagram of TAD systen

The design alternatives were primarily related to where the
image processing would be done and how it would
communicate the results to the server. Initially, the video was
going to be sent to the server, where it would be processed.
This provided more flexibility with the processing power
needed for the algorithm. However, the final decision was to
have the image processing on the Raspberry Pi as transmitting
video via 3G was infeasible. Another alternative was having
the drone transmit the data via WiFi and/or have the drone
return when it collects all the data/runs out of battery.
Additional traffic analysis data can be calculated, but would
require additional time and more processing power. A GUI
could also be available on the web browser, but would require
additional work with integrating a GPS.

Table 1 lists the specifications set forth at the point of MDR
and includes portions that will be realized upon completion
and integration. The flight time and altitude specification is
based on the drone used. In addition, flight time includes the
drone flying to the desired observation point. The altitude
allows for a wide view of the road to be observed. The final
two specifications involve the data transfer and reading. These
allow for the data to be transmitted via 3G and guarantees that
the data will then be viewable from a web interface.

SYSTEM SPECIFICATIONS
Specification Value
Flight Time 15 minutes
Altitude 500 feet
Cellular Signal Strength >5 dB
Browser Data Refresh Rate 30 minutes

Table 1. General T.A.D. system specifications

SDP17 Team 9, Justa T.A.D.

B. Block 1: Raspberry Pi Modules

The Raspberry Pi Modules are made up of both the
Arducam OV5647 Video Module (camera) [4] and the
Huawei E353 3G USB Wireless Modem (3G dongle) [5]. The
camera will be controlled by the Raspberry Pi and will be
taking pictures at regular intervals to create the video. After
taking these pictures, the Raspberry Pi will run the image
processing algorithms on them. Then, the 3G dongle will be
used to send the results from the algorithm to the database by
using an AT&T 3G Subscription.

The camera weighs 0.3 ounces and is capable of taking
photos in resolutions ranging from 480p to 1080p depending
on the configuration. At two meters, its field of view is 2.0m
x 1.33m. The camera’s angle of view is 54 x 41 degrees.

The dongle weighs less than 1.05 ounces and has speeds up
to 150Mbps. Since we have chosen AT&T as our data
provider, the dongle will provide internet wherever AT&T has
service.

To achieve the video, we must interface the Raspberry Pi
with ArduCam. Libraries currently exist for this, but code
must still be designed in such a way that our system can be
implemented.

To achieve the 3G connection, we must interface the
Raspberry Pi with the database by using the dongle. To make
this happen, we must install the drivers for the dongle, then
make sure that the dongle is in dongle mode, instead of usb
mode. The dongle stores its drivers locally and must swap
modes before use. After that, the SIM card must be added.
After configuring the settings and phone number, we may
begin using data and testing.

To test the camera functionality, we will take multiple
pictures from the camera while it’s on the ground. If they are
acceptable, then the camera will be mounted to the drone so
that test video may be acquired mid flight. If the test video
can successfully be used by the image processing algorithms,
then we are successful.

To test the dongle functionality, we will use the Raspberry
Pi to update the database over 3G while the Raspberry Pi is
grounded. If the database is successfully appended with the
desired values, then we are successful.

Past skills which will aid us in completing these tests
include, but aren’t limited to: Programming, Networking, and
Hands on Lab courses.

C. Block 2: Image processing

This block (Fig. 1) consists of the majority of the novel
engineering work. The broad goals of this block is: given the
video feed from the drone’s onboard camera, find the cars in
any given frame on a chosen road, the spacing between cars in
each lane on a chosen road, and the density of cars. The
spacing is defined by the distance s, between cars[3]:

S. =X, -X,

The density £ is defined bly thel flurnlber of vehicles N
observed on a unit length of road L [3]:

k=N/L

With some tolerance for error with regard to the incomplete
spacing of the first and last vehicles, we can restate L as the
sum of the spacings between cars [3]:

L=x"_

Now that we’ve defined our goals, we can proceed to our
approaches and solutions to problems encountered.

We used OpenCV as a starting point, as it is a widely used
computer vision library which is cross-platform capable
because it uses Python. This allows us to develop code on our
main computers and be reasonably sure that the code will
work on the Raspberry Pi.

Early on, the group decided that a stationary, purely
top-down perspective would generate the simplest data,
considering distortion from perspective and optics. This
top-down data would also make the calculation of spacing and
density simpler, as we would need to account for
trigonometric distortion of spacing and density less as well, as
in Fig. 2.

Complete Distortion Mode

o ™ S L Y O L S iy
AR SAA (s i s o g R

S0 \T';"\..-"-'. e __',.--‘;'r""-- e o 5 o
e A v ra i e 2 e
S S A &

g N 2
3 . e

I _-"r | Rl TR,

wobh =/~ -/ A Ak
= AT
zo0 - of ~ 6{ ' - - |
. - 4 - b o -]
250 F = |: 5 - _J: “
i ryalll Ve cEsn
A0 fe A - X e o e -JIL

h h! ' i
- PR | o -:_.' nomf |:|'-
R A S i
o' r b= M vt W .;j.
A0 b J':‘.-;. Yo M, I Hxh-g
o e X e T - ._/. -:I‘,‘-_

am LR n, .r\h ¢ o “'“———'“A R N T
o 100 200 300 =00 A s]

Fig 2. This demonstrates the distortion seen by a camera due to optical and
perspective effects. The center of the image is relatively undistorted, but near
the edges what should be dots on a grid can be seen as rays at an angle [6].

At first, our attempts were primarily naive approaches using
built-in tools in OpenCV, such as edge detection[7] or built-in
background subtraction [8]. Simple Canny [7] edge detection
was not a viable approach as for any given image, there was
too much noise to reliably detect a car versus the pavement,
and it was exceptionally sensitive to car color. Background
subtraction was more generally more accurate than edge
detection in our stationary camera test cases, but even slight
movement would make the camera background subtraction
fail completely, which is a concern for .

Thresholding[9] was another naive approach, but it was
relatively difficult to pick a thresholding value that did not

SDP17 Team 9, Justa T.A.D.

exclude a significant number of cars in a particular test image,
and it would have to be adjusted to local lighting conditions.
Even then, in our available test videos, the resulting detection
rate was not as high as would be preferable for the
trial-and-error involved in picking threshold values.

The lack of reasonable test data was an issue early on, as it
made it difficult to determine if our methods were failing due
to variables that were irrelevant in our chosen data collection
method. For example, we were unable to find traffic data from
an overhead stationary drone, and we made due with data
collected from a moving drone [10], and data collected from
stationary cameras overlooking overpasses [11][12]. This data
makes it difficult to account for factors such as lense viewing
angle, and for the latter two videos, the angled view prevents
an easy calculation of spacing, and by extension, density.

The final, chosen approach took into account the fact that
background subtraction was an accurate method of
determining motion for a stationary camera. By taking a frame
of the video feed every 1/6th of a second, and mapping
previous frames onto the most recent frame, we can
approximate the effect of a stationary camera, masking all
images by the area that would not be visible in the projections
for simplicity’s sake. Then the newly projected images are fed
into a background subtraction algorithm. Since each projection
does not take into account the motion of individual cars within
the image, then the background subtraction “sees” the cars as
moving while stationary objects in the frame do not move. We
will now walk through each step of this algorithm in more
detail.

Fig. 3. An individual frame of the video [10].

Fig. 3 is one frame of a video used for testing. Subsequent
frames are taken at intervals of 1/6th of a second, or 10
frames, to allow for enough movement between frames. These
frames are put on a queue of fixed length to use in the rest of
the algorithm.

The algorithm used to match images is called SIFT, for
Scale Invariant Feature Transform [13].

Fig. 4. An example of feature matching in a busy environment [14]

SIFT (as shown in Fig. 4) works by convolving the image
with a variable scale Gaussian function in x and y, finding the
differences between the various scales, then finding the
extrema of these differences to get keypoint descriptors of an
image that are invariant to scaling, rotation, and location.
Thus, these keypoints in one image can be matched with
keypoints in another. SIFT was chosen because it is integrated
with OpenCV, allowing us to focus on the larger parts of the
algorithm.

Now that the keypoints for each image have been found, we
can find the homography matrix that maps each pixel from
one image to the other [6]. A homography matrix is a 3x3
matrix that maps lines to lines, and it is defined by the
following relation (where x, is the x coordinate in the image, x,
is the y coordinate, and x; is affected by nonplanar motion):

X _hn hy,
X'y |=| by h2:z

]
X3 h31 .

hl 3 'xl
hﬂ

]733_

/\\.
‘:;ﬂ:'flf [zl
Rui }. -
A X’\ et ;?‘/f:/ - H

By = \ .
/ V \“ \,/ planar wlfs

Fig. 5. A graphical explanation of how homography matrices change points in
one perspective, the first image, to points in another perspective, the second
image [6].

SDP17 Team 9, Justa T.A.D.

Again, OpenCV provided pre-written code to estimate the
homography matrix and apply it from one image to another.

To compensate for the fact that the projected image does
not cover the entirety of the newest image (as the drone is
moving), a blank mask is also warped by the homography
matrix and is combined with a bitwise and operator of
previous masks. This mask will be applied over each frame to
be fed into the background subtractor. This will ensure that the
background subtractor does not see extraneous detail.

The background subtractor is based on the paper “Improved
Adaptive Gaussian Mixture Model for Background
Subtraction” (Zivkovic, 2004) [15]. This algorithm uses a
per-pixel estimation of whether the pixel is part of the
background (stationary) or part of the foreground (moving) by
a recursive methodology. It is relatively responsive to changes
in illumination, and can also estimate whether a change in a
portion of the background is actually just a shadow from a
foreground object. OpenCV also provided access to and
implementation of this algorithm. This background subtractor
provides the estimated background as a binary mask, where
foreground is white and background is black. After
background subtraction, we perform opening transformation
on an image [16] to remove noise using a 3x3 kernel. An
opening is image erosion followed by dilation. Erosion is a
transformation where the kernel “slides” over the image (as in
image convolution) and if the area under the kernel centered at
a particular pixel does not only contain white pixels, then that
pixel is turned black in the resulting image. A dilation does the
opposite, if any pixels are white under the kernel centered at a
particular pixel, then the pixel is turned white in the resulting
image [16].

Fig. 6. The output of our background subtraction.

This output (shown in Fig. 6) is given to OpenCV’s contour
detector [that thing]. This gives us a point description of
detected contours, and we can use that to find motion, and
presumably cars. This allows us to find Fig 7.

Fig. 7. Detected motion. As you can see, there is some noise and false
positives, but on the whole it detects motion accurately. (The far left of the
screen falls under the mask mentioned above.)

This algorithm fails for stationary cars, but it is reasonably
responsive to poor camera conditions in most of our test cases.
In this particular case it detected 28 out of 30 cars in the lower
highway, or 93%. We can improve the false positive rate if we
assume that we know a few things about the drone’s position,
the position of the road, and the orientations of the road and
drone, illustrated in Fig. 8. This information is all available
from the DroneKit API that will be used to control the drone
[17].

| r=(cos (a). sin (a)

| radius of inclusion = L + Cw(-sin(a), cos(a))

Fig. 8. Where a is the compass direction of the road, and / is the compass
direction of our drone, L is a chosen GPS coordinate in the road, D is the GPS
coordinate of our drone, we can find a perpendicular vector to , and then use
this vector to create a mask for our images. This mask will prevent the motion
detection algorithm from capturing as many false positives.

We can also use similar methods to find the spacing
between detected cars by lane, shown in Fig. 9.

SDP17 Team 9, Justa T.A.D.

P = (cos (a). sin (a))
h 8 = arctan ((cos/sin)(a))

deltaC=C1-C2
- © = arctan(delta C(2)/ delta C{1})

Fig. 9. Given the point descriptions of detected cars, we can find their
centroids [opencv contour detection]. And given the orientation of the road,
we can compare the angle of the road to the angle of the slope generated by
two centroids.

Fig. 10. An implementation of the above lane detection algorithm.
However the latter two systems have not been implemented

in code yet, as the drone is not fully functional. One of our
main priorities over the break is implementing these systems
in code.

D. Block 3: Data Server and Web Browser

This block represents the implementation of the data server
and web browser. From a high level point of view the
processed data from the Raspberry Pi would be transmitted to
the data server via 3G. The data, primarily car density and
interval (spacing between cars), would then be sent to the
database by the 3G dongle. The web browser would then
query the database and provide the end user an easy to use and
more aesthetically pleasing UI. That being said the goal of this
block is to implement this system from the backend (database)
to the web browser (frontend) utilizing the MEAN stack of
web development. The MEAN stack represents the
technologies utilized in this popular branch of web
development which are mongoDB, ExpressJS, Angular]JS, and
NodelJS [18].

Starting from the bottom-up, the database is hosted on

mongolab, a cloud based database host [19]. The primary
benefits to hosting the database on the cloud rather than on the
Raspberry Pi is to take as much processing load off the
Raspberry Pi as possible due to the intense image processing
already taking place on it. This would be more beneficial as
opposed to running the image processing on a server as
transmitting images over 3G would most likely cause
bandwidth issues. The hosting service is also free up to 500
MB at any given time which should be more than enough as
only numbers are being stored. In addition, mongolab also
provides a low level visualization of the database content for
manual entries which aids developers as well as connection
information to the database either by the shell or mongoDB
URI for smooth integration into the code involving data
transmission over 3G. The database itself utilizes mongoDB, a
NoSQL database system that stores its contents as JSON
documents which allows for varying structure [20]. This
allows for dynamic schemas meaning the parameters and
variables setup in the initial database implementation can be
changed at anytime. This flexibility favors all phases of this
project from development and testing to final staging as a
database bottleneck is not present.

In order to connect the backend (database) with the
frontend, middleware and server side technology is required.
ExpressJS and NodeJS are both backend technologies that will
enable this connection and framing of the web application
with the database. NodelJS is a lightweight backend runtime
environment used to build the raw components of the web
application in terms of server side activity such as connections
to the application [21]. The aforementioned connections also
include the connection to the database which utilizes its own
driver for mongoDB Driver API [22]. ExpressJS works in
hand with NodelJS by creating the framework for the web
application. More specifically, routes are created in which any
type of HTTP request to/from the web application will need to
be redirected by ExpressJS in order for the web application to
service said requests as seen in this example in the ExpressJS
4.X API [23].

With the backend setup, the final implementation of the
MEAN stack is Angular]JS. Angular]JS can be thought of as an
extension of HTML in which it allows for dynamic views as
HTML in its core was made for static views in terms of web
pages. The web application to this date allows for CRUD
(Create, Read, Update, Delete) operations with respect to the
database contents. Angular]JS allows for non intrusive
implementation of this technology with its dynamic front end
framework [24].

Further research into these technologies will be required in
order to implement the planned automatic update feature and
any other useful feature to the web application. Currently, an
“Update” button exists on the website which needs to be
pressed in order to update the database contents to the most up

SDP17 Team 9, Justa T.A.D.

to date view (not to be confused with the refreshing of the
entire web page). The functionality of the auto-update feature
would be tested by manually entering data into the database
via mongolab and viewing the website to see the new entry
being displayed properly. Basic programming knowledge from
ECE 242 Data Structures & Algorithms and exposure to
databases from ECE 373 Software Intensive Engineering
applies to work done in this block.

I11. ProjEcT MANAGEMENT
MDR Goals
Goal Completion
Car Counting 100%
Interval Spacing 100%
Camera and 3G 25%
Database and Web Ul 100%

Table 2. Proposed MDR deliverables and level of completion

The MDR goals are displayed in Table 2, above. These
goals were largely completed: car counting, interval spacing,
and database and web UL The only goal that had issues was
the camera and 3G. This was largely due to complications
with establishing the 3G but will be completed in time for
CDR along with other functionality. These subsystems were
tested individually and will be integrated.

Our team meets weekly with our advisors, Professor
Hossein Pishro-Nik and Professor Daiheng Ni (CEE).. We
also meet separately as team to talk about individual work and
how we will integrate our pieces for the final design. We also
meet when ordering parts and had extensive discussions when
initially selecting the drone. The image processing was
primarily handles by Alex and Cyril. Cyril handled the
high-level image processing for detecting and counting cars.
Alex handled image processing for detecting intervals between

el A TAD =4

[IT— b W ma o e - = - [w | va
Py wirasasrenm

Faam Tkl uriens e 3 [a = 8

L T AL [l

Fasm Twk @ o3]

ey Fge | rransrEEEON

B Tmki] O

S Tk i gy

G TmaE s

M TmaR s g P

e Tma i iy i

Tk A L g DRI

§ sy s i Pl ERAT EEEHUN
- TE i [L] .

O T Py Gy

= TesE el i

e Tmaw Pl 8 000 SR
wem Tk L

W Tmaa i i

o D ® @
w1 i

s i

e i

FETEEE
i
H
[}
[}

1: e char o weark ko el plarence ek o e

cars and developing algorithms to offset camera movement.
Chris was responsible for the Raspberry Pi and its modules.

This included setting up the Raspberry Pi’s OS, the camera,
and the 3G attachment. Matt was responsible for the data
server and creation of the web page that displays the data from
the drone. In addition to each member’s individual
components, all team members were responsible for
completion of the project and assisted each other when
necessary.

Figure 11 displays a Gantt chart of work that has been
completed as well as work that will be done in the future for
CDR and FDR. The reports, presentation, and demo will be
handled by all team members.

IV. CONCLUSION

Our team accomplished most of our goals for MDR, but
encountered issues with the 3G module. We did not expect
this component to have as many issues as it did. In addition,
the sim card was delayed and further postponed
implementation of this overall block. The other component of
this block was the camera, which was not implemented due to
the 3G issues, as mentioned. Otherwise, the image processing
and database/browser goals were completed. Despite the
initial set-back of a second PDR of a new project, we believe
significant progress has been made, but there is still a lot of
work that needs to be done by this point.

For CDR, we plan on finishing basic integration of systems.
Primarily this will be done to ensure that test images can be
taken with the drone, and those images can be analyzed
correctly by the image processing algorithms. The drone’s
flight capabilities will be tested and Matt will practice flying
the drone to ensure his piloting skills are sufficient. The image
processing software will be put into the Raspberry Pi, and the
camera will need to be able to provide its video feed to the
image processing software. For the CDR presentation, we
hope to be able to demo the image processing software
working with our own test images.

The difficulties ahead are primarily with integrating the
image processing software with the Raspberry Pi and being
able to get our own test data. The primary concern is that the
software requires more processing power than the Raspberry
Pi is able to provide. This will result in significant delays in
the processing of the images, so the image processing will not
be real-time with the video. In addition, being able to fly the
drone near roadways can be dangerous. Discussion with our
advisors, especially Professor Ni, will need to be done to
ensure it is safe and legal to fly the drone in certain area.

Integration of systems in order to get test images is our
main goal for CDR. Completion of this goal will provide a
clearer picture of our overall progress. It will help display
changes needed in the image processing software and possible
issues with the Raspberry Pi and its components. All team
members will work to ensure the system integration and
testing is completed and done in a timely manner.

SDP17 Team 9, Justa T.A.D.

ACKNOWLEDGMENT

We would like to thank Professor Pishro-Nik for meeting
with us week-to-week and helping us stay on track. In
addition, Professor Pishro-Nik generously purchased our
drone for us, which would have been outside of our budget.
We would also like to thank Professor Ni for helping us
establish the project idea and providing information about
traffic analysis concepts. We would like to thank Professor
Hollot and Professor Koren for their insight and feedback in
establishing our project. We would also like to thank Mr. Fran
Caron for his assistance in the SDP lab and in ordering our
parts for our project.

REFERENCES

[1]1 E.Dooley. (2015, Aug. 26). Here’s How Much Time Americans Waste
in Traffic [Online]. Available: http://www.abcnews.go.com.

[2] D. Schrank, et al, “2015 Urban Mobility Scorecard,” Texas A&M
Transportation Inst. and INRIX, College Station, TX, Aug., 2015.

[3] D.Ni, Traffic Flow Theory A Unified Perspective, Amherst, MA, 2015,
pp. 14-46.

[4] New Low Cost OV5647 Mini Camera Module for Raspberry Pi Now
Available (2017, Feb 6). Arducam. [Online]. Available:
http://www.arducam.com/lowcost-raspberry-pi-mini-camera-module/

[5] E353 Specifications (2017, Feb 6). Huawei. [Online]. Available:
http://consumer.huawei.com/bd/mobile-broadband/dongles/tech-specs/e
353-bd.htm

[6] C. Gava, G. Bleser, 2D Projective Transformations. [Online]. Available:
http://ags.cs.uni-kl.de/fileadmin/inf_ags/3dcv-ws11-12/3DCV_WS11-12
_lec04.pdf

[7] Canny Edge Detection (2016, Dec 21). OpenCV. [Online]. Available:
http://docs.opencv.org/trunk/da/d22/tutorial_py_canny.html

[8] Background Subtraction (2016, Dec 21). OpenCV. [Online]. Available:
http://docs.opencv.org/trunk/db/d5c/tutorial py bg_subtraction.html

[9] TImage Thresholding (2016, Dec 21). OpenCV. [Online]. Available:

http://docs.opencv.org/trunk/d7/d4d/tutorial py thresholding.html

Simon Laprida. Aerial drone scene of jamed [sic] highway. [Online].

Available:

https://www.videoblocks.com/video/aerial-drone-scene-of-jamed-highw

ay-top-view-of-traffic-in-the-road-city-rush-hour-camera-moves-gently-
showing-the-city-jam-ynwv5gg/

Supercircuits. (2014, Aug 20). Alibi ALI-IPU3030RV IP Camera

Highway Surveillance. [YouTube video]. Available:

https://www.youtube.com/watch?v=PJ5xXXcfuTc

mjrzeman. (2011, Sep 14). HTC Sensation FULL HD 1080p Video

Sample (highway traffic). [YouTube video]. Available:

https://www.youtube.com/watch?v=wWLAc6mdJrs

D. Lowe. (2004, Jan 5). Distinctive image features from scale-invariant

keypoints. International Journal of Computer Vision. [Online].

Available: http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Feature Matching. (2016, Dec 21). OpenCV. [Online]. Available:

http://docs.opencv.org/trunk/dc/dc3/tutorial py matcher.html

Z. Zivkovic. (2004). Improved adaptive Gaussian mixture model for

background subtraction. Proceedings of the International Conference on

Pattern Recognition

Morphological Transformations. (2016, Dec 21). OpenCV. [Online].

Available:

http://docs.opencv.org/trunk/d9/d6 1 /tutorial_py morphological ops.htm

1

DroneKit-Python API Reference. (n.d.). 3DR. [Online]. Available:

http://python.dronekit.io/automodule.html

The MEAN Stack: MongoDB, ExpressJS, AngularJS, and Node.js

(2017, Feb 5). MongoDB. [Online]. Available:

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]
[21]
[22]
(23]

[24]

https://www.mongodb.com/blog/post/the-mean-stack-mongodb-expressj
s-angularjs-and

Quick-Start Guide to mLab (2016, Dec 22). mLab. [Online]. Available:
http://docs.mlab.com/

NoSQL Databases Explained (2016, Dec 22). MongoDB. [Online].
Available: https://www.mongodb.com/nosql-explained

Node.js v6.9.2 Documentation (2016, Dec 22). Node.js. [Online].
Available: https://nodejs.org/dist/latest-v6.x/docs/api/

Node.js MongoDB Driver API (2016, Dec 22). mongodb. [Online].
Auvailable: http://mongodb.github.io/node-mongodb-native/2.0/api/
ExpressJS 4.X API (2016, Dec 22). ExpressJS. [Online]. Available:
http://expressjs.com/en/4x/api.html

AngularJS API Docs (2016, Dec 22). AngularJS. [Online]. Available:
https://docs.angularjs.org/api

